Arsitektur Teknologi Informasi

Arsitektur Search Engine & Information Retrieval

Antonius Rachmat C – anton@ti.ukdw.ac.id

Background

- Web data is very large
 - It's dynamically generated content
 - New pages get added all the time
 - Ex: Technorati has 50M+ blogs
 - Ex: The size of the blogosphere doubles every 6 months
- Yahoo deals with 12TB of data per day (according to Ron Brachman)
- So we need search engine to search in the entire web!

Search engine

Search Engine Statistics Feb 2014

Searches per Day 2010

Service	Searches Per Day	As Of/Notes
AltaVista	50 million	9/00 (as reported to me by AltaVista, for its site and queries through partners)
Inktomi	47 million	4/00 (still reflects queries from Yahoo, which will be handled by Google from July 2000).
Google	40 million	8/00 (14 million of these are at Google.com, 15 million are probably generated through Google's partnership with Yahoo, and the remainder come through Google partner sites, such as Netscape Search)
GoTo	5 million	4/00 (as reported by GoTo to a reader, who forwarded the information to me. Includes queries through affiliates and partners).
Ask Jeeves	4 million	3/00
Voila	1.5 million	1/00 (as reported to me by Voila, for its entire network of sites)

Other SE Statistics

Search Engine Analysis

The following report shows search engines for the industry 'All Categories', ranked by Volume of Searches for the 4 weeks ending 01/14/2012.

Rank	Search Engine	Searches
1.	www.google.com	62.40%
2.	search.yahoo.com	16.13%
3.	www.binq.com	14.64%
4.	www.ask.com	3.88%
5.	search.aol.com	2.43%

Industry Clickstream

The following report shows downstream websites for the industry 'Computers and Internet - Search Engines', ranked by Clicks for the week ending 01/14/2012.

Rank	Website	Clicks
1.	Facebook	6.29%
2.	YouTube	3.48%
3.	Gmail	2.36%
4.	Wikipedia	1.46%
5.	Yahoo! Mail	1.08%

Industry Rankings

The following report shows websites for the industry 'Computers and Internet - Search Engines', ranked by Visits for the week ending 01/14/2012.

Rank	Website	Visits Share
1.	Google	66.59%
2.	Bing	10.99%
3.	Yahoo! Search	10.90%
4.	Ask	2.59%
5.	AOL Search	1.63%

Search Engine Search Terms

The following report shows **search terms** for the search engine 'www.google.com', ranked by Volume of Searches for the 4 weeks ending 01/14/2012.

Rank	Search Term	Volume
1.	facebook	3.11%
2.	youtube	0.96%
3.	yahoo	0.53%
4.	yahoo mail	0.44%
5.	craigslist	0.41%

Purpose of Search Engines

- Helping people find what they're looking for
 - Starts with an "information need"
 - It's convert into a query and then gets results
- SE materials are available in:
 - Web pages, documents
 - Image, Flash, Audio, Video
 - Any other format

Examples of search engines

- Conventional (library catalog).
 Search by keyword, title, author, etc.
- Text-based (Lexis-Nexis, Google, Yahoo!).
 Search by keywords. Limited search using queries in natural language.
- Multimedia (QBIC, WebSeek, SaFe) Search by visual appearance (shapes, colors,...).
- Question answering systems (Ask, Wolfram Alpha)
 Search in (restricted) natural language
- Research systems (Lemur, Nutch)
- Meta Search Engine (agregation search engine)

What does it take to build a search engine?

- Decide what to index
- Collect it
- Index it (efficiently)
- Keep the index up to date
- Provide user-friendly query facilities

Searching example

- pizza AND pepperoni AND ham AND NOT olives AND NOT garlic
- "Carilah link ke semua pages yang meliputi kata pizza seperti halnya kata pepperoni dan kata ham, tetapi mengabaikan pages yang mengandung kata zaitun atau kata garlic."

Search Advanced Search

0

Preferences

Web

Results 1 - 1

Teen Tattoos & Piercings -- All About Parenting and Tweens & Teens ...

"It's important for kids to forge a sense of self." So tread lightly and choose your battles ... family.go.com/parentpedia/preteen-teen/behavior/teen-tattoos-piercings/ - 107k -Feens, Tattoos, and Piercings: More Than Meets the Eye ...

For **Teens** - Convincing Your Parents to Let You Get a **Tattoo** or ...

Cached - Similar pages

Without that acceptance, their **self-esteem** can suffer and they may carry For **Teens** lattoo.about.com/cs/articles/a/convinceparents.htm - 26k - Cached - Similar pages Convincing Your Parents to Let You Get a Tattoo or Piercing ...

Teens, **Tattoos** and Body Piercing, **Tattoo** and Body Piercing

Sep 25, 2006 ... while others take part to enhance their **self-esteem** and peer image. Feens who are considering a tattoo should realize the following: ... www.emaxhealth.com/68/7541.html - 19k - Cached - Similar pages

Teen Fashion, Body Piercing and Tattooing - Teen Behavior Article

Body piercing, dyed hair, shaved heads and **tattoos**. Should **teen** fashion be cause ... Related www.theparentreport.com/resources/ages/teen/behavior/100.html - 41k Books. Safe **Teen** · 501 Ways to Boost Your Child's **Self-Esteem ...** Cached - Similar pages

Tattoos

What's the safest way to get a tattoo? Does it hurt? What can go wrong? ... Body Image and Self-Esteem. Tattoos. KidsHealth>Teens>Your Body>Skin Stuff>Tattoos ... kidshealth.org/teen/your_body/skin_stuff/safe_tattooing.html - Cached

Behavior and Self-Esteem Articles

Articles on the behaviors, issues and trends influencing modern tweens and teens. ... An tweensandteensnews.com/archives/2006/main_behaviorselfesteem.php - Cached Expression Of Individuality - A parent's primer on piercings and tattoos. ...

Fattoos are a sign of low **self-esteem** - Health - Wellness - Lifestyle ...

Tattoos are a sign of low **self-esteem ...** Milkshakes can help anorexic **teens**. More >> More Lifestyle Stories, Infidelity On-Line ...

timesofindia.indiatimes.com/Lifestyle/.../articleshow/4361981.cms - Cached

Teenage **Self-Esteem** -- All About Parenting and Tweens & **Teens** Behavior ...

Tattoos & Piercings, Decoding Teen Lingo, Suggest A Topic, From Our Sponsors, What Experts family.go.com/parentpedia/preteen-teen/behavior/teen-**self-esteem** - 109k - <u>Cached</u> Say ... 2007 Not Acceptable? **Teens** and **Self-Esteem**. 5 days ago Not ...

Why Searches Fail

- Empty search
- Nothing on the site on that topic (scope)
- Misspelling or typing mistakes
- Vocabulary differences
- Missed search choices
- System fail

Search engine problems

- Human maintenance
 - Subjective
 - Example: Ranking hits based on \$\$\$
- Automated search engines
 - Quality of results
- Searching process algorithm
 - High quality results aren't always at the top of the list

Standard Web Search Engine Architecture

Search
Engine
Architec
ture (2)

Search Engine Characteristics

- Unedited anyone can not enter content
 - Quality issues; Spam
- Varied information types
 - Audio, video, flash, book, brochures, catalogs, dissertations, news reports, weather, all in one place!
- Different kinds of users
 - Lexis-Nexis: Paying, professional searchers
 - Online catalogs: Scholars searching scholarly literature
 - Web: Every type of person with every type of goal
- Scale
 - Hundreds of millions of searches/day; billions of docs

Search Engine Methods

- Page "popularity" (e.g., DirectHit)
 - Frequently visited pages (in general)
 - Frequently visited pages as a result of a query
- Link "co-citation" (e.g., Google)
 - Which sites are linked to by other sites?
 - Draws upon sociology research on bibliographic citations to identify "authoritative sources"
- Using Information Retrieval Method
 - Tokenisasi, Stemming, Stopwords, Bobot, Feature Selection, Data mining method, evaluation

How Index files Are Created

- Periodically rebuilt
- Documents are parsed to extract tokens.
 These are saved with the **Document ID**.

Doc 1

Now is the time for all good men to come to the aid of their country

Doc 2

It was a dark and stormy night in the country manor. The time was past midnight

How Index Files are Created

After all
 documents have
 been parsed the
 index file is sorted
 alphabetically.

T	D #
Term	Doc #
now	1
is	1
the	1
time	1
for	1
all	1
good	1
men	1
to	1
come	1
to	1
the	1
aid	1
of	1
their	1
country	1
it	2
was	2
а	2
dark	2
and	2
stormy	2
night	2
in	2
the	2
country	2
manor	2
the	2
time	2
was	2
past	2
midnight	2
g	_

How Index Files are Created

- Multiple term entries for a single document are merged.
- Withindocument term frequency information is compiled.

Term	Doc #
а	2
aid	1
all	1
and	2
come	1
country	1
country	2
dark	2
for	1
good	1
in	2
is	1
it	2
manor	2
men	1
midnight	2
night	2
now	1
of	1
past	2
stormy	2
the	1
the	1
the	2
the	2
their	1
time	1
time	2
to	1
to	1
was	2
was	2

Term	Doc #	Freq
а	2	2 1
aid		1 1
all		1 1
and		2 1
come		1 1
country		1 1
country		2 1
dark		2 1
for		1 1
good		1 1
in		2 1
is		1 1
it		2 1
manor		2 1
men		1 1
midnight		2 1
night		2 1
now		1 1
of		1 1
past		2 1
stormy		2 1
the		1 2
the		2 2
their		1 1
time		1 1
time		2 1
to		1 2
was		2 2

Storage Strategy

- The indexes are still used, even though the web is so huge.
- Some systems partition the indexes across different machines.
 - Using distributed database
 - Each machine handles different parts of the data.
 - Other systems duplicate the data across many machines; queries are distributed among the machines.
 - Most do a combination of these.

Ranking system: Link Analysis

Assumptions:

- If the pages pointing to this page are good, then this is also a good page
- The words on the links pointing to this page are useful indicators of what this page is about
- Why does this work?
 - The official Toyota site will be linked to by lots of other official (or high-quality) sites
 - The best Toyota fan-club site probably also has many links pointing to it

Google Page Rank

- Sebuah situs akan semakin populer jika semakin banyak situs lain yang meletakan link yang mengarah ke situsnya, dengan asumsi isi/content situs tersebut lebih berguna dari isi/content situs lain.
- PageRank dihitung dengan skala 1-10.
- Sebuah halaman juga akan menjadi semakin penting jika halaman lain yang memiliki rangking (pagerank) tinggi mengacu ke halaman tersebut.
- Jika sebuah situs yang mempunyai Pagerank 9 akan di urutkan lebih dahulu dalam list pencarian Google daripada situs yang mempunyai Pagerank 8 dan kemudian seterusnya yang lebih kecil.

Google Page Rank

- We assume page A has pages T1...Tn which point to it (i.e., are citations).
- The parameter d is a damping factor which can be set between 0 and 1. d is usually set to 0.85.
- C(A) is defined as the number of links going out of page
 A.
- PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))
- So to be included in Google's top ranked results a page:
 - must have lots of votes from outside
 - votes cast by pages that have received many votes of their own.

PageRank
Note: these are not real PageRanks, since they include values >= 1 Pr=.725 **=4.254437** Pr=1

Web Crawlers

- How do the web search engines get all of the items they index? Automatic Web Crawlers
- Main idea:
 - Start with known sites
 - Record information for these sites
 - Follow the links from each site
 - Record information found at new sites
 - Repeat
- 1 doc per minute per crawling server

Crawler Indexing Diagram

What the Index Needs

- Basic information for document or record
 - File name / URL / record ID
 - Title or equivalent
 - Keywords
 - Size, date, MIME type
- Full text of item
- More metadata
 - Product name, picture ID
 - Category, topic, or subject
 - Other attributes, for relevance ranking and display

Web Crawling Issues

- Keep out signs
 - A file called norobots.txt / robots.txt
 - Figure out which pages change often, and recrawl these often.
- Duplicates, virtual hosts, etc.
 - Convert page contents with a hash function
 - Compare new pages to the hash table
- Lots of problems
 - Server unavailable; incorrect html; missing links;

Robots.txt

- Protocol for giving spiders ("robots") limited access to a website, originally from 1994
 - www.robotstxt.org/wc/norobots.html
- Website announces its request on what can(not) be crawled
 - For a URL, create a file URL/robots.txt
 - This file specifies access restrictions

Contoh

```
# robots.txt for http://www.example.com/
User-agent: *
Disallow: /cyberworld/map/ # This is an infinite virtual URL space
Disallow: /tmp/ # these will soon disappear
Disallow: /foo.html
```

```
# robots.txt for http://www.example.com/
User-agent: *
Disallow: /cyberworld/map/ # This is an infinite virtual URL space
# Cybermapper knows where to go.
User-agent: cybermapper
Disallow:
```

The Google Search Engine

- Invented by Larry Page and Sergey Brin
- Online in 1998
- Mission: to organize the world's information and make it universally accessible and useful
- How google finds data?
 - Using spider GoogleBot
 - Using site **submission**

Information Retrieval

- Pencarian materi (biasanya dokumen) dari sesuatu yang sifatnya tak-terstruktur (unstructured, biasanya teks) untuk memenuhi kebutuhan informasi dari dalam koleksi besar (biasanya disimpan dalam komputer).
- Representasi, penyimpanan, organisasi, pencarian dan akses ke item informasi untuk memenuhi kebutuhan informasi pengguna.
- Penekanan pada proses retrieval informasi (bukan data).

Unstructured (text) vs. structured (database) data in 2006

IR vs. databases: Structured vs unstructured data

Structured data bisa ditabelkan!

Employee	Manager	Salary
Smith	Jones	50000
Chang	Smith	60000
lvy	Smith	50000

Typically allows numerical range and exact match (for text) queries, e.g., Salary < 60000 AND Manager = Smith.

Sistem IR

Main problems in IR

- Document and query indexing
 - How the best represents their contents?
- Query evaluation (or retrieval process)
- System evaluation
 - How good is a system?
 - Are the retrieved documents relevant? (precision)
 - Are all the relevant documents retrieved? (recall)

Masalah dengan Keyword

- Mungkin tidak me-retrieve dokumen relevan yang menyertakan synonymous terms.
 - "restaurant" vs. "café"
 - "UKDW" vs. "Universitas Kristen Duta Wacana"
- Mungkin me-retrieve dokumen tak-relevan yang menyertakan ambiguous terms.
 - "bat" (baseball vs. mamalia)
 - "Apple" (perusahaan vs. buah-buahan)
 - "bit" (unit data vs. perilaku menggigit)

Document indexing

- Goal = Find the important meanings and create an internal representation
- Factors to consider:
 - Accuracy to represent meanings (semantics)
 - Facility for computer to manipulate
- What is the best representation of contents?
 - Char. string (char trigrams): not precise enough
 - Word: good coverage, not precise
 - Phrase: poor coverage, more precise
 - Concept: poor coverage, precise

Bobot: tf*idf weighting schema

- tf = term frequency
 - frequency of a term/keyword in a document

The higher the tf, the higher the importance (weight) for the doc.

- df = document frequency
 - no. of documents containing the term
 - distribution of the term
- idf = inverse document frequency
 - the unevenness of term distribution in the corpus
 - the specificity of term to a document

The more the term is distributed evenly, the less it is specific to a document

weight(t,D) =
$$tf(t,D) * idf(t)$$

Stopwords / Stoplist

- function words **do not bear useful** information for IR of, in, about, with, I, although, ...
- Stoplist: contains stop words, not to be used as index
 - Awalan, akhiran, sisipan, angka, kata sambung, kata-kata umum lainnya
- The removal of stopwords usually improves IR effectiveness
- A few "standard" stoplists are commonly used.

Stemming

- Reason:
 - Different word forms may bear similar meaning
- Stemming:
 - Removing some endings of word -> mencari kata dasar

IR Algorithms

- Boolean model
- Vector Space model
- Probabilistic model

System evaluation

- Efficiency: time, space
- Effectiveness:
 - How is a system capable of retrieving relevant documents?
 - Is a system better than another one?
- Metrics often used (together):
 - Precision = retrieved relevant docs / retrieved docs
 - Recall = retrieved relevant docs / relevant docs

Next

- Tidak ada TTS
- Jadwal Remidi saat jadwal TTS
 - Remidi TK1 dan Remidi TK2 (gantian)

After TTS: Business Process and Information
 Systems