
Sistem Terdistribusi 10

Replication & Consistency

Masalah yang terjadi pada Sistem

• Bagaimana agar sistem reliable?
• Bagaimana agar sistem memiliki

performance yang baik?
• Bagaimana agar sistem dapat diakses • Bagaimana agar sistem dapat diakses

dengan mudah kapan saja?

• Solusi?
– REPLICATION

Replication

• Process sharing information to ensure
consistency between redundant
resources such as software/hardware
components to improve reliability, fault -components to improve reliability, fault -
tolerance, or accessibility

• Make copies of services on multiple
machines

Server Replication

Why Replication?

• Reliability : dapat diandalkan
• Performance : performanya tetap baik
• Scalability : dapat diperluas
• Availability : tetap dapat diakses• Availability : tetap dapat diakses

Reasons detail

• Reliability :
– If a replica crashes , system can continue working

by switching to other replicas.
– Avoid corrupted data:

• can protect against a single, failing write operation.• can protect against a single, failing write operation.

• Improving Performance
– Important for distributed systems over large

geographical areas.
– Divide the work over a number of servers.
– Place data in the proximity of clients.

Reasons detail

• Scalability :
– Data dapat ditambahkan hingga besar
– Walau data besar, namun data tetap dapat

ditampung karena data dapat dipecah dan
direplikasidireplikasi

– Sistem dapat diperluas
• Availability :

– Karena data tersebar dengan replikasi, maka
data akan selalu ada jika diakses

– Masing-masing replika dapat saling
menggantikan jika terjadi kerusakan

Example: DNS

• DNS (Domain Name Service) allows owner
of a domain to replicate name database

• Same two reasons:• Same two reasons:
• Data dapat dibagi-bagi agar lebih dekat ke client
• Sistem memiliki backup data sehingga dapat

diandalkan

• Also need
• Scaling technique

Issue-issue
• Updates

– Consistency?
• Whenever a copy is modified, it becomes different from the

rest.

– Sinkronisasi dan Locking?

• Replica placement
– How many?
– Where?

• Redirection / Routing
– Which replica should be used by client?

Replication

• Data centric
– Focus on data in all replicas
– Try to keep data consistent across replicas

• Client centric
– Focus on single client
– Only maintain consistency for each client

separately

General Approach

• Update a single item in local replica
• Atomically
• Time-stamp – e.g., logical clock

• Replica propagates update to all of its
other replicasother replicas

• Periodically (polling)

• Receiving replica merges update with its
own copy

• Conflicting updates resolved arbitrarily to latest
time-stamp

Model

The truth

Rules

• Why replicate?
– Reliability

• Avoid single points of failure

– Performance
• Scalability in numbers and geographic area• Scalability in numbers and geographic area

• Why not replicate?
– Replication transparency

• Consistency issues

– Updates are costly
• Availability may suffer if not careful

Caching

Penyimpanan data2
yang sering diakses di
tempat penyimpanan tempat penyimpanan
sementara

Control Replication

Replikasi difokuskan
pada software server

Arsitektur Replikasi

Services provided for process groups

Group
address

expansion

Group

send

Leave

Join

Multicast
communication

send

Fail Group membership
management

Process group

View-synchronous group
communication

p

q

r

p crashes
p

q

r

p crashes
a (allowed). b (allowed).

view (q, r)view (p, q, r) view (q, r)view (p, q, r)

p

q

r

view (p, q, r)

p

q

r

p crashes

view (q, r)view (p, q, r)

c (disallowed). d (disallowed).
p crashes

view (q, r)

Replication Management

• Front End : request communication
– Requests can be made to a single RM or to multiple RMs

• Coordination : RMs decide
– whether the request is to be applied
– the order of requests

• Execution : The RMs execute the request tentatively.
• Agreement : The RMs attempt to reach consensus on the

effect of the request.

• Response
– One or more RMs responds to the front end.

Passive Replication

Passive Replication

• If primary server is down , pick one backup
to be primary

• Disadvantage : big overhead (primary
must wait until all data is propagated to must wait until all data is propagated to
backups)

• Variant : FE sent all read request directly
to backups

• Example : Sun Network Information
System (NIS)

Active Replication

Active Replication

• Request
– FE send multicast request to RM
– Read access only to one RM
– Write request goes to all RM in sequential – Write request goes to all RM in sequential

orders

• Coordination
– Group communication system send request

to each RM

Physical & Logical Object
• There are physical copies of logical objects in the

system.
• Operations are specified on logical objects, but

translated to operate on physical objects.

Transactions on replicated data

Client + front end Client + front end

deposit(B,3);

UR

B

A BB BA A

getBalance(A)

Replica managers
Replica managers

vailable copies

Client + front end Client + front end

Replica managers

deposit(A,3);

UR

deposit(B,3);

getBalance(B)

getBalance(A)

A

X P

B

Replica managersdeposit(B,3);

Replica managers

Y

M

B

N

A

B

Object Replication
a) A remote object capable of handling concurrent invocations on its own.
b) A remote object for which an object adapter is required to handle

concurrent invocations

Concurrency-aware objects vs system-managed concurrency

Object Replication

a) Replication-aware distributed objects.
b) A distributed system responsible for replica management

Replication-aware objects can adopt object-specific policies

Operation on data store

• Read. Ri(x)b -> Client i performs a read for data
item x and it returns b

• Write . Wi(x)a -> Client i performs write on data
item x setting it to aitem x setting it to a

• Operations depends on:
– Time of issue (when request is sent by client)
– Time of execution (when request is executed at a

replica)
– Time of completion (when reply is received by client)

Inconsistency

• Data:
– How old is the data?
– How old is the data allowed to be?
– Time modified– Time modified
– Versions

• Operation order:
– Were operations performed in the right order?
– What orderings are allowed?

Consistency

• Clients can modify resource on any of the
replicas.

• What happens if another client requests
resource before replica has informed resource before replica has informed
others of modification, as in cache
consistency in distributed file systems?
– Answer depends upon application...

Consistency

• Non-distributed data store:
– Program order is maintained

• Updates and concurrency may result in
conflicting operations

• Conflicting Operations:• Conflicting Operations:
– Read-write conflict (only 1 write)
– Write-write conflict (multiple concurrent writes)

• Consistency:
– The order in which conflicting operations are

performed affects consistency

Contoh

Consider three processes

• Three shared variables: x, y, z
– Initialized to zero

• Each updates one variable, and then reads
and prints other two

Four Valid Execution Sequences

Coherence vs Cosistency

• Data Coherence : ordering of operations
for single data item
– e.g. a read of x will return the most recently

written value

• Data Consistency : ordering of operations
for whole data store
– includes ordering of operations on other data

items too

Consistency Model

• Data centric
– Strict consistency
– Sequential consistency
– Release consistency
– Lazy release consistency

• Client centric
– Monotonic reads
– Monotonic writes
– Read your writes
– Write follows read

Data centric consistency model

Data centric

• Contract between processes and the data store.
If processes obey certain rules, data store will
work correctly

• Normally one would like: “read returns the result • Normally one would like: “read returns the result
of most recent write”

• However : No global clock! What is most recent
(last) write?

• Conflict : Two operations in the same interval on
the same data item and at least one is a write.

Simbol

• W(x) a, berarti client tertentu menulis
sesuatu bernilai a
– Ex: x = a

• Tanda panah merah, berarti client tertentu • Tanda panah merah, berarti client tertentu
menulis di tempat client lain, sehingga
bisa menyebabkan ketidak konsisten an

• R(x) a, berarti client tertentu membaca
nilai variabel a
– Ex: print(x) -> a

Strict consistency
• Any read on data item x returns a value corresponding

to the results of the most recent write on x
• Implicitly assumes the presence of a global clock
• A write is immediately visible to all processes
• Hard to implement on distributed system because of • Hard to implement on distributed system because of

“most recent ” due to network delays and no global clock

Sequential Consistency

• All write operation are done sequentially
• Not ordered according to “time”

Release consistency

• Explicit separation of synchronization task
– Acquire -> proses pengaksesan data ter-up-to-

date
– Release -> proses melepas semua data yg

dipegangnyadipegangnya

• Orders are FIFO
• Release only after all read/write by client is

completed
• Read/write only after all acquire by client is

completed

Eager Release consistency

Lazy Release Consistency

• Don't send updates on release
• Acquire cause clients get newest state
• Done by client -> more efficient

Client Centric

• Provides guarantees about ordering of
operation for single client

• Single client access data store
• Client accesses different replicas• Client accesses different replicas
• Data isn't shared by clients
• Each client will see different orderings
• Effects on operation depends on the clients

itself and also from historical operations the
client has performed

Client Centric : Mobile Users

Mobile users present a challenge
• Client may access replica 1, make some updates
• Client moves, accesses replica 2
• Modifications to replica 1 may not have migrated to replica 2 yet!

Monotonic Reads
• The read operations performed by a single process P at two

different local copies (R1 and r2) of the same data store.
• If a client has seen a value of x at a time t, it will never see older

version of x in the future
• Reading incoming email messages will fetches the latest updates
• Automatically reading your personal calendar updates from different

servers. Monotonic Reads guarantees that the user sees all
updates, no matter from which server the automatic reading takes
place.place.

Monotonic Write

• The write operations performed by a single process P
at two different local copies of the same data store

• A write operation on data item x is completed before
any successive write on x by the same client

• All writes by single client are sequentially ordered
• Eg.: maintaining version of replicated files in correct • Eg.: maintaining version of replicated files in correct

order everywhere

Read your Write

• Effect of a write on x will always be seen by a
successive read of x by same client

• Ex: editor and browser, if not integrated, you
may not read-your-writes of an HTML pagemay not read-your-writes of an HTML page

Write follow reads

• A write operation on x will be performed on a copy
of x that is up to date with the values most
recently read by the same client

• Ex: comments on news group, let A an article
read recently, R the response to that article, then
R must follows A.R must follows A.

Update propagation

Pull dan Push
• Pull

– On request by read
– Client-based pull
– client requests another server to send it any updates it has at

that moment.
– R/W low (depends on read frequently)
– polling delay– polling delay

• Push
– When client writes, it pushes to all replicas
– updates are propagated to other copies actively
– Server-based push
– Have to keep track all replicas
– R < W
– Use lease time

Perbedaan

Issue Push-based Pull-based

State of server List of client replicas and caches No ne

Messages sent Update to all clients Poll and updateMessages sent Update to all clients Poll and update

Response time at
client

Immediate (or fetch-update time) Fetch-update time

More...

• Consistency and Redundancy
– All copies must be strongly consistent
– All copies must contain full state
– Reduced consistency -> reduced reliability

• Consistency and Performance• Consistency and Performance
– Consistency requires extra work + communication
– Can results in loss of overall performance

• Consistency and Scalability
– Implementation of consistency must be scalable
– Avoid centralized approach
– Avoid too much communication

NEXT

• Peer to Peer Systems
• Ada jadwal ganti untuk tgl 30 Nov (kelas

A)
– Mau tgl 26/27/3/4??– Mau tgl 26/27/3/4??

• Ada jadwal ganti untuk presentasi:
– Tgl 6 Des 2010
– Jam 8 (A-B33) dan 11 (B-D33)

